

These complete notes have been made for class 12th board computer science exam.

Introduction
Structured Query Language (SQL) is a standard programming language used to manage and manipulate
databases. SQL is used with relational database management systems (RDBMS) such as MySQL, Microsoft SQL
Server, PostgreSQL, and Oracle to create, retrieve, update, and delete data efficiently.

Relational Database Management System (RDBMS) Concepts

1. Table (Relation)
A table in RDBMS is a structured collection of related data, organized in rows and columns.
Example: Student

+----+--------+-----+
| ID | Name | Age |
+----+--------+-----+
1	Sampat	22
2	Sunita	21
3	Prem	23
+----+--------+-----+

2. Row (Tuple/Record)
o A row represents a single record in a table.
o Example: (1, Alice, 22) is a row in the Student

table.
3. Column (Attribute/Field)

o A column represents a specific field of data in a
table.

o Example: ID, Name, and Age are columns in the
Student table.

4. Arity/Degree
o The degree of a table is the number of columns

(attributes) it has.
o Example: The Student table has 3 columns, so

its degree = 3.
5. Cardinality

o The cardinality of a table is the number of rows (tuples) in it.
o Example: The Student table has 3 rows, so its cardinality = 3.

Features of SQL:

• SQL is case insensitive.
• SQL statements end with a semicolon (;).
• SQL provides statements for data definition, manipulation, and retrieval.
• SQL allows constraints to maintain data integrity.
• SQL supports functions for performing operations on data.

Data Types and Constraints in MySQL
Data Types of Attribute

Data Type Description
CHAR(n) Fixed-length character string (0 to 255 characters)
VARCHAR(n) Variable-length character string (0 to 65535 characters)
INT Integer values
FLOAT Floating-point values
DATE Stores dates in 'YYYY-MM-DD' format

 Constraints
Constraints are rules in SQL that help maintain the integrity and accuracy of data in a table. They ensure that the
data remains valid and consistent.

Constraint Description
NOT NULL Ensures a column cannot have NULL values
UNIQUE Ensures all values in a column are distinct
DEFAULT Assigns a default value if no value is provided
PRIMARY KEY Uniquely identifies each row in a table
FOREIGN KEY Enforces referential integrity by linking two tables

Example:

1. PRIMARY KEY
o Uniquely identifies one or more columns in a table.
o Example:
o CREATE TABLE STUDENT (

 RollNumber INT PRIMARY KEY,
 SName VARCHAR(30) NOT NULL
);

2. FOREIGN KEY
o Links a column in one table to a column in another table.
o Example:

ALTER TABLE STUDENT ADD FOREIGN KEY (GUID) REFERENCES GUARDIAN(GUID);
3. NOT NULL

o Prevents a column from having NULL values.
o Example:

ALTER TABLE STUDENT MODIFY SName VARCHAR(30) NOT NULL;
4. UNIQUE

o Ensures that all values in a column are unique (no duplicates allowed).
o Example:

ALTER TABLE GUARDIAN ADD UNIQUE(GPhone);
5. DEFAULT

o Assigns a default value to a column if no value is provided.
o Example:

ALTER TABLE STUDENT MODIFY SDateofBirth DATE DEFAULT '2000-01-01';
6. CHECK

o Enforces a condition on the values of a column.
o Example:

ALTER TABLE STUDENT ADD CHECK (Age >= 18);
7. AUTO_INCREMENT

o Automatically generates values, usually for primary keys.
o Example:

o CREATE TABLE STUDENT (
 RollNumber INT PRIMARY KEY AUTO_INCREMENT,
 SName VARCHAR(30) NOT NULL

);

Types of keys

1. Candidate Key

A candidate key is the minimal set of attributes that can uniquely identify a tuple (record) in a table.

Key Points:

✅ A candidate key is a super key with no extra attributes.

✅ It ensures uniqueness, meaning no two records have the same value in the candidate key’s columns.

✅ Every table must have at least one candidate key.

✅ A table can have multiple candidate keys, but only one primary key is selected from them.

✅ Example: STUD_NO in the STUDENT table can be a candidate key if it uniquely identifies each student.

✅ A candidate key cannot have duplicate or null values.

➤ Composite Candidate Key: Sometimes, a single column is not enough to uniquely identify a record. In such

cases, a combination of columns forms a candidate key.

• Example: (STUD_ID, COURSE_ID) together might be a candidate key in a university database.

➤ Difference between Candidate Key & Super Key:

• Super Key: A set of one or more attributes that can uniquely identify a record but may contain extra

attributes.

• Candidate Key: A minimal version of a super key (i.e., it has no unnecessary attributes).

2. Primary Key

A Primary Key is a unique identifier for each
record in a database table. It ensures that no
two rows have the same value for that key and
that the value is never NULL.
Key Characteristics of a Primary Key

1. Uniqueness – Each value in the primary
key column must be unique.

2. Non-NULL – A primary key cannot have
NULL values.

3. Single Column or Multiple Columns –
A primary key can consist of a single
column (simple key) or multiple
columns (composite key).

4. Automatic Indexing – Many databases automatically create an index for the primary key to improve
search performance.

Example of Primary Key
Consider the following STUDENT table:

Student_ID Name Age Course
101 Rahul 18 B.Tech
102 Priya 19 BCA
103 Amit 18 B.Sc
104 Suman 20 BBA

• Here, Student_ID is the Primary Key because each student has a unique ID.
• No two students can have the same Student_ID, and it cannot be NULL.

SQL Query to Define a Primary Key
CREATE TABLE STUDENT (
 Student_ID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT,
 Course VARCHAR(50)
);
Composite Primary Key
When a table requires more than one column to uniquely identify a row, a Composite Primary Key is used.
Example: Composite Primary Key
Consider the following ENROLLMENT table where a student enrolls in multiple courses:

Student_ID Course_ID Enrollment_Date
101 CSE101 2024-01-15
101 CSE102 2024-01-16
102 CSE101 2024-01-15

Here, Student_ID alone is not enough because a student can enroll in multiple courses. Similarly, Course_ID
alone is not unique. So, we define a Composite Primary Key using both Student_ID and Course_ID.
SQL Query for Composite Primary Key
CREATE TABLE ENROLLMENT (
 Student_ID INT,
 Course_ID VARCHAR(10),
 Enrollment_Date DATE,
 PRIMARY KEY (Student_ID, Course_ID)
);

3. Super Key

A Super Key is a set of one or more attributes

(columns) that can uniquely identify a tuple (row) in a

relation (table).

Key Characteristics of Super Key:

1. Uniqueness – A super key uniquely identifies

each row in a table.

2. May Contain Extra Attributes – A super key

may have unnecessary attributes along with

the primary key.

3. Includes Candidate Key & Primary Key – Every candidate key and primary key is also a super key.

4. There Can Be Multiple Super Keys – A table can have multiple super keys.

4. Foreign key

A Foreign Key is a column or a set of columns in one table that establishes a link to the Primary Key of another
table. It helps maintain referential integrity between the two tables by ensuring that the value in the foreign key
column corresponds to a valid value in the referenced primary key column.

Key Points:
• A Foreign Key is used to establish relationships between two tables.
• It references the Primary Key of another table.
• Ensures referential integrity, preventing invalid data entry.
• Helps in implementing One-to-Many and Many-to-Many relationships.
• If a referenced row is deleted or updated, the foreign key constraints define how the dependent rows

behave (CASCADE, SET NULL, etc.).

Example of Foreign Key in SQL
Consider two tables: Students and Courses
1. Courses Table (Primary Table / Referenced Table)

Course_ID (Primary Key) Course_Name
101 Mathematics
102 Physics
103 Chemistry

2. Students Table (Child Table / Referenced Table)
Student_ID (Primary Key) Student_Name Course_ID (Foreign Key)
1 Amit 101
2 Raj 102
3 Priya 103
4 Rohit 101

Here, Course_ID in the Students table is a Foreign Key referencing Course_ID in the Courses table.

Creating Tables with Foreign Key in SQL
CREATE TABLE Courses (
 Course_ID INT PRIMARY KEY,
 Course_Name VARCHAR(50) NOT NULL
);

CREATE TABLE Students (
 Student_ID INT PRIMARY KEY,
 Student_Name VARCHAR(50) NOT NULL,
 Course_ID INT,
 FOREIGN KEY (Course_ID) REFERENCES Courses(Course_ID) ON DELETE CASCADE
);
Explanation:

• Course_ID in the Courses table is the Primary Key.
• Course_ID in the Students table is a Foreign Key, referencing the Course_ID of the Courses table.
• ON DELETE CASCADE: If a course is deleted from the Courses table, all students enrolled in that course

will be deleted automatically.

Advantages of Foreign Key
✅ Maintains Data Integrity – Prevents invalid data entry.
✅ Reduces Redundancy – Eliminates duplicate data storage.
✅ Ensures Consistency – Keeps related data synchronized.
✅ Supports Relationships – Essential for relational database design.

5. Alternate key

There may be one or more attributes or a combination of attributes that uniquely identify each tuple in a relation.

These attributes or combinations of the attributes are called the candidate keys. One key is chosen as the primary

key from these candidate keys, and the remaining candidate key, if it exists, is termed the alternate key. In other

words, the total number of the alternate keys is the total number of candidate keys minus the primary key. The

alternate key may or may not exist. If there is only one candidate key in a relation, it does not have an alternate key.

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as candidate keys. In this

relation, Employee_Id is chosen as the primary key, so the other candidate key, PAN_No, acts as the Alternate key.

The objective of alternate key is:

o An alternative key's main goal is to make sure that no two entries in a table have the same set of attribute

values combined. It provides a different method of record identification from the primary key.

o By providing a variety of possibilities for uniquely identifying entries, alternate keys facilitate flexibility in

database architecture. Different qualities may be effectively employed to identify records based on

certain use cases.

6. Composite key

Whenever a primary key consists of more than one attribute, it is known as a composite key. This key is also

known as Concatenated Key.

For example, in employee relations, we assume that an employee may be assigned multiple roles, and an

employee may work on multiple projects simultaneously. So the primary key will be composed of all three

attributes, namely Emp_ID, Emp_role, and Proj_ID in combination. So these attributes act as a composite key

since the primary key comprises more than one attribute.

The objective of alternate key is:

o An alternative key's main goal is to make sure that no two entries in a table have the same set of attribute

values combined. It provides a different method of record identification from the primary key.

o By providing a variety of possibilities for uniquely identifying entries, alternate keys facilitate flexibility in

database architecture. Different qualities may be effectively employed to identify records based on

certain use cases.

7. Artificial key

The key created using arbitrarily assigned data are known as artificial keys. These keys are created when a primary

key is large and complex and has no

relationship with many other relations. The data

values of the artificial keys are usually

numbered in a serial order.

For example, the primary key, which is composed of Emp_ID, Emp_role, and Proj_ID, is large in employee

relations. So it would be better to add a new virtual attribute to identify each tuple in the relation uniquely.

8. Surrogate Key -

A key is a column, or group of columns, in a database management system (DBMS) that uniquely identifies every

row in a table. Natural keys and surrogate keys are the two categories of keys.

Natural Key: A column, or group of columns, that is generated from the table’s data is known as a natural key. For

instance, since it uniquely identifies every client in the table, the customer ID column in a customer table serves

as a natural key.

Surrogate key: A column that is not generated from the data in the database is known as a surrogate key. Rather,

the DBMS generates a unique identifier for you. In database tables, surrogate keys are frequently utilized as

primary keys.

SQL for Data Definition
SQL (Structured Query Language) is used to create, modify, and delete databases and tables. Data Definition
Language (DDL) is a part of SQL that defines the database structure.
CREATE Database
Command:
CREATE DATABASE StudentAttendance;
Explanation:
This command is used to create a new database. Here, a new database named "StudentAttendance" is created.

CREATE Table
Command:
CREATE TABLE GUARDIAN (
 GUID CHAR(12) PRIMARY KEY,
 GName VARCHAR(20) NOT NULL,
 GPhone CHAR(10) UNIQUE,
 GAddress VARCHAR(30) NOT NULL
);
Explanation:
This command creates a table named "GUARDIAN" with the following columns:

Column Name Data Type Constraints
GUID CHAR(12) PRIMARY KEY
GName VARCHAR(20) NOT NULL
GPhone CHAR(10) UNIQUE
GAddress VARCHAR(30) NOT NULL

Describe Table
Command:
DESCRIBE STUDENT;
Explanation:
This command is used to view the structure of a table. It displays the column names, data types, and constraints
of the table "STUDENT".

ALTER Table
(A) Add Primary Key
Command:
ALTER TABLE STUDENT ADD PRIMARY KEY (RollNumber);
Explanation:
This command adds a PRIMARY KEY constraint to the "RollNumber" column in the "STUDENT" table.

(B) Add Foreign Key
Command:
ALTER TABLE STUDENT ADD FOREIGN KEY (GUID) REFERENCES GUARDIAN(GUID);
Explanation:
This command links the "GUID" column in the "STUDENT" table to the "GUID" column in the "GUARDIAN" table,
making it a FOREIGN KEY.

(C) Add UNIQUE Constraint
Command:
ALTER TABLE GUARDIAN ADD UNIQUE(GPhone);
Explanation:
This command ensures that the "GPhone" column in the "GUARDIAN" table contains only unique values.

(D) Add an Attribute (Column)
Command:
ALTER TABLE GUARDIAN ADD Income INT;
Explanation:
This command adds a new column "Income" of integer data type to the "GUARDIAN" table.
Column Name Data Type Constraints
Income INT None

(E) Modify Data Type
Command:
ALTER TABLE GUARDIAN MODIFY GAddress VARCHAR(40);
Explanation:
This command modifies the "GAddress" column's data type from VARCHAR(30) to VARCHAR(40).

(F) Modify Constraint
Command:
ALTER TABLE STUDENT MODIFY SName VARCHAR(20) NOT NULL;
Explanation:
This command adds a NOT NULL constraint to the "SName" column in the "STUDENT" table, ensuring it cannot
contain NULL values.

(G) Add Default Value
Command:
ALTER TABLE STUDENT MODIFY SDateofBirth DATE DEFAULT '2000-05-15';

Explanation:
This command sets the default value of the "SDateofBirth" column in the "STUDENT" table to '2000-05-15'.

(H) Remove an Attribute (Column)
Command:
ALTER TABLE GUARDIAN DROP Income;
Explanation:
This command removes the "Income" column from the "GUARDIAN" table.

(I) Remove Primary Key
Command:
ALTER TABLE GUARDIAN DROP PRIMARY KEY;
Explanation:
This command removes the PRIMARY KEY constraint from the "GUARDIAN" table.

DROP Statement
(A) Drop Table
Command:
DROP TABLE STUDENT;
Explanation: Is command se "STUDENT" table ko permanently delete kar diya gaya hai.
(B) Drop Database
Command:
DROP DATABASE StudentAttendance;
Explanation: Is command se pura "StudentAttendance" database delete kar diya gaya hai.

Practice Question
Create a database named SchoolRecords. Then, create a table STUDENT with the following columns:

Column Name Data Type Constraints
RollNumber INT PRIMARY KEY
SName VARCHAR(30) NOT NULL
Age INT

GUID CHAR(12) FOREIGN KEY (References GUARDIAN)
SDateofBirth DATE DEFAULT '2000-01-01'

Then, perform the following operations:
1. Modify SName to VARCHAR(50) NOT NULL.
2. Add a new column Email of type VARCHAR(50).
3. Drop the column Age.
4. Delete the STUDENT table.
5. Drop the SchoolRecords database.

Write SQL queries to perform these operations.

SQL for Data Manipulation
Insertion of Records
INSERT INTO STUDENT VALUES (1, 'Sampat Liler', '2003-05-15', '444444444444');

SQL for Data Query
SELECT Statement
Definition: The SELECT statement is the most basic and powerful SQL command used to retrieve data from a
database. It allows us to filter specific columns or rows as needed.
Example:
SELECT SName, SDateofBirth FROM STUDENT WHERE RollNumber = 1;

STUDENT Table:

RollNumber SName SDateofBirth
1 Rahul 2003-05-21
2 Aisha 2004-07-15

Querying Using Database OFFICE
EMPLOYEE Table:

EmpNo EName DeptId Salary Bonus
101 Sampat D01 6000 500
102 Mariyam D02 7500 NULL
103 Insiya D04 8000 1000
104 Divya D03 7200 700

(A) Retrieve Selected Columns
Definition: If we need to retrieve only specific columns from a table, we use the SELECT statement with the
desired column names.
Example:
SELECT EmpNo FROM EMPLOYEE;
Output:

EmpNo
101
102
103
104

(B) Renaming Columns
Definition: Using the AS keyword, we can assign an alias name to a column, which will be displayed under that
name in the result set.
Example:
SELECT EName AS Name FROM EMPLOYEE;
Output:

Name
Sampat
Mariyam
Insiya
Divya

(C) DISTINCT Clause
Definition: The DISTINCT clause eliminates duplicate values, ensuring that only unique values appear in the
output.
Example:
SELECT DISTINCT DeptId FROM EMPLOYEE;
Output:

DeptId
D01
D02
D03
D04

(D) WHERE Clause
Definition: The WHERE clause is used to apply specific conditions so that only rows satisfying the condition are
retrieved.
Example:
SELECT * FROM EMPLOYEE WHERE Salary > 5000 AND DeptId = 'D04';
Output:

EmpNo EName DeptId Salary Bonus
103 Insiya D04 8000 1000

(E) Membership Operator IN
Definition: The IN operator is used to filter records matching multiple values at once.
Example:
SELECT * FROM EMPLOYEE WHERE DeptId IN ('D01', 'D02', 'D04');
Output:

EmpNo EName DeptId
101 Sampat D01
102 Mariyam D02
103 Insiya D04

(F) ORDER BY Clause
Definition: The ORDER BY clause sorts the data in ascending or descending order.
Example:
SELECT * FROM EMPLOYEE ORDER BY Salary DESC;
Sorted Output:

EmpNo EName Salary
103 Insiya 8000
102 Mariyam 7500
104 Divya 7200
101 Sampat 6000

(G) Handling NULL Values
Definition: To handle NULL values, we use the "IS NULL" or "IS NOT NULL" condition.
Example:
SELECT * FROM EMPLOYEE WHERE Bonus IS NULL;
Output:

EmpNo EName Bonus
102 Mariyam NULL

(H) Substring Pattern Matching
Definition: The LIKE operator is used for pattern matching with '%' and '_' wildcards.
Example:
SELECT * FROM EMPLOYEE WHERE EName LIKE 'K%';
Output:

EmpNo EName
104 Divya

Data Updation and Deletion
Data Updation
Definition:
Data updation refers to modifying existing records in a database table using the UPDATE statement. This is useful
when we need to change a specific field of a record without altering the entire row.
Syntax:
UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

• table_name: The name of the table where data needs to be updated.
• SET column = value: Specifies which column's value should be changed.
• WHERE condition: Defines which row(s) should be updated (if omitted, all rows will be updated).

Example:
Consider the following STUDENT table:

RollNumber Name Age GUID
1 Aman 18 100100100100
2 Rohan 19 100200200200
3 Priya 17 100300300300

Now, we execute the following SQL command:
UPDATE STUDENT
SET GUID = 101010101010
WHERE RollNumber = 3;
Updated Table:

RollNumber Name Age GUID
1 Aman 18 100100100100
2 Rohan 19 100200200200
3 Priya 17 101010101010

Here, the GUID of the student with RollNumber = 3 has been updated successfully.

Data Deletion
Definition:
Data deletion is the process of removing specific records from a table using the DELETE statement. This helps in
managing unwanted or outdated data in a database.
Syntax:
DELETE FROM table_name
WHERE condition;

• table_name: The name of the table from which data needs to be deleted.
• WHERE condition: Specifies which records should be deleted (if omitted, all records will be deleted).

Example:
Consider the same STUDENT table before deletion:

RollNumber Name Age GUID
1 Aman 18 100100100100
2 Rohan 19 100200200200
3 Priya 17 101010101010

Now, we execute the following SQL command:
DELETE FROM STUDENT
WHERE RollNumber = 2;

Updated Table after Deletion:
RollNumber Name Age GUID
1 Aman 18 100100100100
3 Priya 17 101010101010

Here, the record of the student with RollNumber = 2 has been removed from the table.

Functions in SQL
Single Row Functions

Function Name Description Example Example
Output

Math Functions

ABS(x) Returns the absolute value of x SELECT ABS(-5); 5

CEIL(x)
Returns the smallest integer greater
than or equal to x SELECT CEIL(4.2); 5

FLOOR(x) Returns the largest integer less than
or equal to x SELECT FLOOR(4.8); 4

ROUND(x, d) Rounds x to d decimal places SELECT ROUND(3.14159, 2); 3.14

POWER(x, y) Returns x raised to the power y SELECT POWER(2,3); 8

SQRT(x) Returns the square root of x SELECT SQRT(16); 4

String Functions

UCASE(str) Converts string to uppercase SELECT UCASE('hello'); HELLO

LCASE(str) Converts string to lowercase SELECT LCASE('HELLO'); hello

LENGTH(str) Returns length of string in characters SELECT LENGTH('MySQL'); 5

CONCAT(str1, str2,
...) Concatenates strings SELECT CONCAT('My', 'SQL'); MySQL

SUBSTRING(str,
pos, len)

Extracts substring from str starting at
pos for len characters

SELECT
SUBSTRING('Database', 2, 4); atab

TRIM(str) Removes leading and trailing spaces SELECT TRIM(' MySQL '); MySQL

LTRIM(str) Removes leading spaces from a
string SELECT LTRIM(' MySQL'); MySQL

RTRIM(str) Removes trailing spaces from a
string SELECT RTRIM('MySQL '); MySQL

Date Functions

NOW() Returns current date and time SELECT NOW(); 2025-02-23
14:30:00

CURDATE() Returns the current date SELECT CURDATE(); 2025-02-23

CURTIME() Returns the current time SELECT CURTIME(); 14:30:00

YEAR(date) Extracts the year from a date SELECT YEAR('2025-02-23'); 2025

MONTH(date) Extracts the month from a date SELECT MONTH('2025-02-
23'); 2

DAY(date) Extracts the day from a date SELECT DAY('2025-02-23'); 23

Conversion Functions

CAST(x AS type) Converts a value to a specified data
type SELECT CAST(123 AS CHAR); '123'

CONVERT(x, type) Converts a value to a different type SELECT CONVERT(123,
CHAR); '123'

Aggregate Functions / Multi Row Function

Function
Name Description Example Query Example Output

COUNT()
Returns the number of rows that match a
specified condition

SELECT COUNT(*) FROM
employees; 50 (Total rows)

SUM() Returns the total sum of a numeric column SELECT SUM(salary) FROM
employees;

500000 (Total
salary)

AVG() Returns the average value of a numeric
column

SELECT AVG(salary) FROM
employees;

50000 (Average
salary)

MAX() Returns the maximum value in a column SELECT MAX(salary) FROM
employees;

100000 (Highest
salary)

MIN() Returns the minimum value in a column SELECT MIN(salary) FROM
employees;

20000 (Lowest
salary)

GROUP BY Clause and HAVING Clause in SQL
The GROUP BY clause is used in SQL to group rows that have the same values in specified columns into
aggregated data. This is often used with aggregate functions like COUNT(), SUM(), AVG(), MAX(), and MIN().
The HAVING clause is used to filter groups based on aggregate functions, similar to how the WHERE clause filters
individual rows.

Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
GROUP BY column_name
HAVING condition;

Example with Table
Employee Table (employees)

EmployeeID Name Department Salary
1 Raj IT 50000
2 Priya HR 45000
3 Amit IT 55000
4 Neha Sales 40000
5 Rahul HR 48000
6 Sonal IT 60000

Query using GROUP BY and HAVING
Find the total salary of each department and show only those departments where the total salary exceeds
1,00,000.
SELECT Department, SUM(Salary) AS Total_Salary
FROM employees
GROUP BY Department
HAVING SUM(Salary) > 100000;

Output

Department Total_Salary
IT 165000

Explanation

1. The GROUP BY clause groups records by the Department column.
2. The SUM(Salary) function calculates the total salary for each department.
3. The HAVING clause filters out groups where the total salary is less than or equal to 1,00,000.

Key Differences Between WHERE and HAVING

Feature WHERE Clause HAVING Clause
Filters Filters individual rows before grouping Filters groups after applying aggregate functions
Used With SELECT, UPDATE, DELETE SELECT (with GROUP BY)
Aggregate Functions Cannot use aggregate functions Can use aggregate functions

Operations on Relations in Database Management System (DBMS)
Relations in DBMS refer to tables that store data in structured formats. Various operations can be performed on
these relations to retrieve meaningful data. The most common relational operations include Union, Intersection,
Set Difference, Cartesian Product, and Join. These operations are fundamental to relational algebra and SQL
queries.

1. Union (∪)
Definition
The Union operation combines two relations and returns all unique rows present in either of the relations.
Duplicate records are eliminated in the final result.
Conditions for Union:

• Both relations must have the same number of attributes (columns).
• The attributes must have the same data type.

Example
Consider two tables Student_A and Student_B representing students from two different batches.

Roll_No Name Course
101 Alex CS
102 Bob IT
103 Carol CS

Table: Student_A
Roll_No Name Course
103 Carol CS
104 David IT
105 Eva CS

Table: Student_B

Union Output (Student_A ∪ Student_B)

Roll_No Name Course
101 Alex CS
102 Bob IT
103 Carol CS
104 David IT
105 Eva CS

Carol appears in both tables, but in the final result, duplicates are removed.

2. Intersection (∩)
Definition
The Intersection operation returns only those rows that are present in both relations.
Example
Using the same tables Student_A and Student_B, the intersection will retrieve only the common records.
Intersection Output (Student_A ∩ Student_B)

Roll_No Name Course
103 Carol CS

Carol is the only common record in both tables, so it appears in the output.

3. Set Difference (-)
Definition
The Set Difference operation finds the records that exist in one relation but not in the other. The operation
Student_A - Student_B will return records that are in Student_A but not in Student_B.
Example
Set Difference Output (Student_A - Student_B)

Roll_No Name Course
101 Alex CS
102 Bob IT

These students are present in Student_A but not in Student_B.

4. Cartesian Product (×)
Definition
The Cartesian Product operation returns a combination of each row from the first relation with every row from the
second relation.

Example
Consider two small tables Employee and Department.

Emp_ID Name
1 John
2 Alice

Table: Employee
Dept_ID Dept_Name
101 HR
102 IT

Table: Department
Cartesian Product Output (Employee × Department)

Emp_ID Name Dept_ID Dept_Name
1 John 101 HR
1 John 102 IT
2 Alice 101 HR
2 Alice 102 IT

Each employee is paired with each department, resulting in m × n rows (2 × 2 = 4).

5. Join (⨝)
Join (⨝) in DBMS
Definition
The Join operation in Database Management Systems (DBMS) is used to combine rows from two or more tables
based on a common column. Unlike the Cartesian Product, which combines every row of one table with every row
of another, a Join operation applies a condition to filter relevant records. This helps in retrieving meaningful data
efficiently.
Joins are crucial in relational databases because data is often stored in multiple tables to maintain normalization.
Using Joins, we can reconstruct meaningful information by linking tables logically.

Types of Joins
There are several types of Joins in SQL, each serving a specific purpose:
1. Inner Join
An Inner Join returns only those records where there is a match in both tables based on the given condition. If a
row in one table does not have a corresponding match in the other table, it will be excluded from the result.
Syntax
SELECT A.column1, A.column2, B.column1, B.column2
FROM TableA A
INNER JOIN TableB B
ON A.common_column = B.common_column;
Example
Employee Table

Emp_ID Name Dept_ID
1 John 101
2 Alice 102
3 Bob 103
4 David 104

Department Table
Dept_ID Department_Name
101 HR
102 IT
103 Finance

Inner Join Output
SELECT Employee.Emp_ID, Employee.Name, Department.Department_Name
FROM Employee
INNER JOIN Department
ON Employee.Dept_ID = Department.Dept_ID;

Emp_ID Name Department_Name
1 John HR
2 Alice IT
3 Bob Finance
👉 Note: Employee "David" (Dept_ID = 104) is not included in the result because there is no matching
department.

2. Left Join (Left Outer Join)
A Left Join returns all the records from the left table and only the matching records from the right table. If there is
no match, NULL values are returned for columns from the right table.
Syntax
SELECT A.column1, A.column2, B.column1, B.column2
FROM TableA
LEFT JOIN TableB
ON A.common_column = B.common_column;
Example Output
SELECT Employee.Emp_ID, Employee.Name, Department.Department_Name
FROM Employee
LEFT JOIN Department
ON Employee.Dept_ID = Department.Dept_ID;

Emp_ID Name Department_Name
1 John HR
2 Alice IT
3 Bob Finance
4 David NULL
👉 Note: "David" is included, but since there is no matching Dept_ID in the Department table, NULL appears in
the Department_Name column.

3. Right Join (Right Outer Join)
A Right Join returns all records from the right table and only the matching records from the left table. If a match is
not found, NULL values appear for columns from the left table.
Syntax
SELECT A.column1, A.column2, B.column1, B.column2
FROM TableA A
RIGHT JOIN TableB B
ON A.common_column = B.common_column;
Example Output
SELECT Employee.Emp_ID, Employee.Name, Department.Department_Name
FROM Employee
RIGHT JOIN Department
ON Employee.Dept_ID = Department.Dept_ID;

Emp_ID Name Department_Name
1 John HR
2 Alice IT
3 Bob Finance

NULL NULL Sales
👉 Note: If there was a department "Sales" in the Department table without any employees assigned, it would
appear in the result with NULL values in the Employee columns.

4. Full Outer Join
A Full Outer Join returns all records from both tables. If there is a match, the corresponding data is displayed;
otherwise, NULL values appear where a match is not found.
Syntax
SELECT A.column1, A.column2, B.column1, B.column2
FROM TableA A
FULL OUTER JOIN TableB B
ON A.common_column = B.common_column;
Example Output
SELECT Employee.Emp_ID, Employee.Name, Department.Department_Name
FROM Employee
FULL OUTER JOIN Department
ON Employee.Dept_ID = Department.Dept_ID;

Emp_ID Name Department_Name
1 John HR
2 Alice IT
3 Bob Finance
4 David NULL
NULL NULL Sales
👉 Note: This result includes all employees (even those without a department) and all departments (even those
without employees).

Comparison of Join Types

Join Type Includes Non-Matching Rows? NULL Values Possible?
Inner Join No No
Left Join Yes (from left table) Yes (for right table)
Right Join Yes (from right table) Yes (for left table)
Full Join Yes (from both tables) Yes (both sides)

Finally We say :
Joins are essential in database queries to fetch meaningful data spread across multiple tables. Depending on the
requirement, we can choose:

• Inner Join for strict matches,
• Left Join if we want all data from the left table,
• Right Join if we want all data from the right table,
• Full Outer Join if we need everything from both tables.

Conclusion

Operation Description
Union (∪) Combines two sets and removes duplicates.
Intersection (∩) Retrieves only common records.
Set Difference (-) Finds records in one set but not in another.
Cartesian Product (×) Returns all possible row combinations.
Join (⨝) Merges tables based on a common column.

Cartesian Product in DBMS
In DBMS (Database Management System), the Cartesian Product is a type of join operation that returns the
cross combination of rows from two tables. Each row from the first table is paired with every row from the
second table.
Formula for Cartesian Product:
If Table A has m rows and Table B has n rows, then the result of the Cartesian product will have:
Total Rows=m×n\text{Total Rows} = m \times n

Example:
Consider two tables:
Table: Students

Student_ID Student_Name
1 Rahul
2 Priya

Table: Courses
Course_ID Course_Name
101 DBMS
102 Operating System

Cartesian Product Result:
Each row from the Students table is combined with each row from the Courses table.

Student_ID Student_Name Course_ID Course_Name
1 Rahul 101 DBMS
1 Rahul 102 Operating System
2 Priya 101 DBMS
2 Priya 102 Operating System

Key Points:

1. No Condition Applied – Cartesian product does not use any condition (like ON or WHERE).
2. Large Output – The result set grows exponentially (m × n), which can be inefficient for large tables.
3. Used in Joins – Cartesian product is often used as an intermediate step in INNER JOIN or CROSS JOIN.

SQL Query Example:
SELECT * FROM Students, Courses;
This will generate the Cartesian Product of the two tables.

When to Use Cartesian Product?

• When you need all possible combinations of two tables.
• As an intermediate step in JOIN operations.

 Subscribe Youtube Channel - Anvira Education - YouTube

 Join Course - Https://Anviraeducation.Com/

 Follow Us On Facebook - Https://Www.Facebook.Com/Anviraedu

 Follow Us On Instagram - https://www.instagram.com/anvira_edu/

 Sampat Sir Instagram - https://www.instagram.com/writersampat/

 Join Our Telegram Channel - https://t.me/Anviraeducation20

https://www.youtube.com/@AnviraEducation
https://www.facebook.com/Anviraedu
https://www.instagram.com/anvira_edu/

